Шипунова Татьяна Викторовна
Должность:не указана
Группа:Посетители
Страна:Россия
Регион:не указан
Рабочая программа по алгебре для 8 класса

Пояснительная записка

Рабочая программа по алгебре для 8 класса разработана на основе:

1. Федерального компонента государственного стандарта среднего (полного) общего образования (Приказ № 1089 от 05.03.2004);

2. Примерной программы основного общего образования по математике. М.2004г.

3. Федерального перечня учебников, рекомендованных Министерством образования и науки Российской Федерации к использованию в образовательном процессе в общеобразовательных учреждениях на 2014-2015 учебный год;

4. Примерной программы основного общего образования по математике и авторской программы Ю.Н Макарычев и др.

(Программы общеобразовательных учреждений. Алгебра. 7-9 классы. Составитель: Бурмистрова Т.А. - М.:Просвещение, 2009).

5. Учебного плана МБОУ СОШ №12 на 2014-2015 учебный год.

Программа обеспечена следующим методическим комплектом:
1. Алгебра, учебник для 8 класса общеобразовательных учреждений /Ю.Н.Макарычев, Н.Г.Миндюк, К.И.Нешков, С.Б.Суворова — М.: Просвещение, 2012 г.

2. Алгебра. Дидактические материалы.8 класс/ В.И. Жохов, Ю.Н.Макарычев, Н.Г.Миндюк, / М.: Просвещение, 2013 г.

3.Самостоятельные и контрольные работы по алгебре и геометрии для 8 класса./А. П. Ершова, В. В. Голобородько, А. С. Ершова. М.:
Илекса, - 2013г.

Авторская программа рассчитана на 102 часа (34 учебные недели). В связи с тем, что школа работает в режиме 35 учебных недель, данная программа составлена на 105 часов (3 часа в неделю). Программа рассчитана на 102 ч., т.к. 3 учебных дня выпадают на праздничные дни, то тема «Итоговое повторение курса алгебры 8 класса» сокращена на 3 часа, 10 часов отведено для проведения текущих контрольных работ, тестов по материалам 8 класса.

Цели и задачи

Изучение математики на ступени основного общего образования направлено на достижение следующих целей:

· овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

· интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;

· формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

· воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.

В ходе освоения содержания курса учащиеся получают возможность:

· развить представления о числе и роли вычислений в человеческой практике;

· сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;

· овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;

· изучить свойства и графики функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;

· получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;

· развить логическое мышление и речь — умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;

· сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.

Требования к математической подготовке учащихся 8 класса

В результате изучения алгебры ученик должен

Ø знать/понимать

· существо понятия математического доказательства; примеры доказательств;

· существо понятия алгоритма; примеры алгоритмов;

· как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;

· как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;

· как потребности практики привели математическую науку к необходимости расширения понятия числа;

· вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;

· смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;

Ø уметь

· выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;

· применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;

· решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним;

· решать линейные неравенства с одной переменной и их системы;

· находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;

· определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;

· описывать свойства изученных функций, строить их графики;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

· выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;

· моделирования практических ситуаций и исследования построенных моделей с использованием аппарата алгебры;

· описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;

· интерпретации графиков реальных зависимостей между величинами.

Оценка письменных контрольных работ обучающихся по математике.

Ответ оценивается отметкой «5», если:

Ø работа выполнена полностью;

Ø в логических рассуждениях и обосновании решения нет пробелов и ошибок;

Ø в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

Отметка «4» ставится в следующих случаях:

Ø работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);

Ø допущены одна ошибка или есть два — три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).

Отметка «3» ставится, если:

Ø допущено более одной ошибки или более двух — трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.

Отметка «2» ставится, если:

Ø допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.

Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.

2.Оценка устных ответов обучающихся по математике

Ответ оценивается отметкой «5», если ученик:

Ø полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;

Ø изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;

Ø правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;

Ø показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;

Ø продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;

Ø отвечал самостоятельно, без наводящих вопросов учителя;

Ø возможны одна — две неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.

Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

Ø в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;

Ø допущены один — два недочета при освещении основного содержания ответа, исправленные после замечания учителя;

Ø допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.

Отметка «3» ставится в следующих случаях:

Ø неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке обучающихся» в настоящей программе по математике);

Ø имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;

Наши услуги



Мир учителя © 2014–. Политика конфиденциальности