link7134 link7135 link7136 link7137 link7138 link7139 link7140 link7141 link7142 link7143 link7144 link7145 link7146 link7147 link7148 link7149 link7150 link7151 link7152 link7153 link7154 link7155 link7156 link7157 link7158 link7159 link7160 link7161 link7162 link7163 link7164 link7165 link7166 link7167 link7168 link7169 link7170 link7171 link7172 link7173 link7174 link7175 link7176 link7177 link7178 link7179 link7180 link7181 link7182 link7183 link7184 link7185 link7186 link7187 link7188 link7189 link7190 link7191 link7192 link7193 link7194 link7195 link7196 link7197 link7198 link7199 link7200 link7201 link7202 link7203 link7204 link7205 link7206 link7207 link7208 link7209 link7210 link7211 link7212 link7213 link7214 link7215 link7216 link7217 link7218 link7219 link7220 link7221 link7222 link7223 link7224 link7225 link7226 link7227 link7228 link7229 link7230 link7231 link7232 link7233 link7234 link7235 link7236 link7237 link7238 link7239 link7240 link7241 link7242 link7243 link7244 link7245 link7246 link7247 link7248 link7249 link7250 link7251 link7252 link7253 link7254 link7255 link7256
Редактор
Должность:Редактор
Группа:Мир учителя
Страна:Россия
Регион:Санкт-Петербург
Урок по физике для 10 класса "Уравнение Менделеева - Клапейрона "

Серова Л.В.,
учитель физики и информатики
ГУ «Вечерняя (сменная) средняя общеобразовательная школа отдела образования акимата Аулиекольского района» в УК - 161/4 п. Кушмурун,
Аулиекольский район,Костанайская область,Республика Казахстан

Задачи урока:

Образовательная: вывести математическую зависимость между тремя макроскопическими параметрами p,V,T газа, формирование навыков применять полученные знания при решении задач.

Развивающая: развивать навыки составления план — конспекта урока для дальнейшего ведения рассказа, выражать свои мысли правильным «физическим» языком.

Воспитательная: формирование познавательного интереса к изучаемому материалу, создание условий для проявления инициативы.

Тип урока: комбинированный урок с элементами беседы.

Материально-техническое оснащение урока: учебник, карточки для индивидуальной работы, ТСО

Ход урока.

I Часть. Организационная.

Приветствие и контроль посещаемости.

II Часть. Актуализация опорных знаний.

Работа с карточками

№ 1

а) Допишите определение: Идеальный газ — это газ, __________________________________________________

______________________________________________________________________________________________

б) Запишите основное уравнение МКТ: ____________________________________________________________

в) Это уравнение позволяет связать среднюю кинетическую энергию молекул идеального газа и его давление: ______________________________________________________________________________________________

№ 2

Допишите определение:

а) Величины, характеризующие состояние макроскопических тел (V. Р.Т) без учета молекулярного строения тел, называется _________________________________________________________________________________

б) Тепловое равновесие__________________________________________________________________________

______________________________________________________________________________________________

в) Что необходимо, чтобы измерить температуру тела? _______________________________________________

______________________________________________________________________________________________

№ 3

Английский ученый У. Кельвин ввел абсолютную шкалу температур, которую называют шкалой Кельвина.

Вопросы:

1. Как обозначают абсолютную температуру? _______________________________________________________

2. Связь между шкалой Кельвина и Цельсия выражается формулой: ____________________________________

3. Абсолютному нулю по шкале Цельсия соответствует температура_________________________________

III Часть. Изучение, усвоение нового материала.

Уравнение состояния идеального газа (уравнение Менделеева - Клапейрона).

До этого рассматривались газовые процессы, при которых один из параметров состояния газа оставался неизменным, а два других изменялись. Теперь рассмотрим общий случай, когда изменяются все три параметра состояния газа и получим уравнение, связывающее все эти параметры. Закон, описывающий такого рода процессы, был установлен в 1834г. Клапейроном (французский физик, с 1830г. работал в Петербургском институте путей сообщения) путем объединения рассмотренных ранее законов.

Пусть имеется некоторый газ массой “m”. На диаграмме (P, V) рассмотрим два его произвольных состояния, определяемых значениями параметров P1, V1, T1 и P2, V2, T2. Из состояния 1 в состояние 2 будем переводить газ двумя процессами:

  1. изотермического расширения (1®1¢);
  2. изохорического охлаждения (1¢®2).

Первый этап процесса описывается законом Бойля-Мариотта, поэтому . (9.5)

Второй этап процесса описывается законом Гей-Люссака: . (9.6)

Исключая из этих уравнений , получим:. (9.7)

Поскольку состояния 1 и 2 были взяты совершенно произвольно, то можно утверждать, что для любого состояния:

– уравнение Клапейрона

где С — постоянная для данной массы газа величина.

Недостатком этого уравнения является то, что величина “C” различна для различных газов, для устранения этого недостатка Менделеев в 1875г. несколько видоизменил закон Клапейрона, объединив его с законом Авогадро.

Запишем полученное уравнение для объема Vкм. одного 1 киломоля газа, обозначив постоянную буквой “R”: .

Согласно закону Авогадро, при одинаковых значениях P и T киломоли всех газов будут иметь одинаковые объемы Vкм. и, следовательно, постоянная “R” будет одинакова для всех газов.

Постоянная “R” называется универсальной газовой постоянной. Полученное уравнение связывает параметры киломоля идеального газа и, следовательно, представляет уравнение состояния идеального газа.

Значение постоянной “R” можно вычислить: .

От уравнения для 1кмоль легко перейти к уравнению для любой массы газа “m”, приняв во внимание, что при одинаковых давлениях и температуре “z” киломолей газа будут занимать в” z” раз больший объем, чем 1 кмоль. (V=z×Vкм.).

С другой стороны отношение , где m — масса газа, m — масса 1 кмоля, будет определять число молей газа.

Умножим обе части уравнения Клапейрона на величину , получим Þ (9.7а)

Это и есть уравнение состояния идеального газа, записанное для любой массы газа.

Уравнению можно придать другой вид. Для этого введем величину,

где R — универсальная газовая постоянная;

NA — число Авогадро;

k — Постоянная Больцмана (далее будет показано, что “k” представляет коэффициент пропорциональности между средней энергией теплового движения молекулы и абсолютной температурой).

Подстановка числовых значений R и NA дает следующее значение:.

Умножим и разделим правую часть уравнения на NA, тогда , здесь – число молекул в массе газа “m”. С учетом этого (*). Вводя величину – число молекул в единице объема, приходим к формуле: (**). Уравнения (*) и (**) представляют различные формы записи уравнения состояния идеального газа. Отношение , тогда плотность идеального газа можно получить из уравнения .

Þ Þ .

Таким образом, плотность идеального газа пропорциональна давлению и обратно пропорциональна температуре.

Простая связь между температурой и остальными параметрами идеального газа делает заманчивым его использование в качестве термометрического вещества. Обеспечив постоянство объема и использовав в качестве температурного признака давление газа, можно получить термометр с идеальной линейной температурной шкалой. Эту шкалу будем называть идеальной газовой шкалой температур.

Практически, по международному соглашению, в качестве термометрического тела берут водород. Установленная по водороду с использованием уравнения состояния идеального газа шкала называется эмпирической шкалой температур.

Физический смысл универсальной газовой постоянной.

Универсальная газовая постоянная имеет размерность работы, отнесенной к 1 молю и температуре 1°К.

Выясним физический смысл постоянной “R”.

Пусть в цилиндре под поршнем находится 1 моль газа объема V. Газ под поршнем оказывает давление равное внешнему постоянному давлению, т.е. p = const. Пусть газ в цилиндре нагревается на 1°К. Расширяясь, он поднимает поршень на высоту “h”, совершив при том работу , но давление на поршень , поэтому , здесь – приращение объема, т.е. , поэтому работа расширения будет равна

(*)

С другой стороны, до нагревания уравнение состояния

(1)

после нагревания

(2)

Вычитая из (2) — (1), получим . Сопоставляя со (*), имеем .

Т.е.

универсальная газовая постоянная численно равна работе при изобарическом расширении 1 моля газа вследствие его нагревания на 1°К.

ЗАПОМНИТЬ

ЗАМЕЧАНИЕ: Уравнение Клапейрона — Менделеева справедливо и для смеси газов. Пусть имеем смесь газов:

Массы газов –

m1, m2, m3, …, mn

молярные массы газов –

m1, m2, m3, …, mn

Введем величины: ; и т.д. Причем .

Уравнение Менделеева - Клапейрона для смеси газов запишется в виде:

.

Для того, чтобы упростить это выражение для смеси газов вводят понятие эффективного молекулярного веса смеси газов.

ОПРЕДЕЛЕНИЕ: Эффективным молекулярным весом называется вес такого газа, который при одинаковых параметрах со смесью газов имеет ту же массу, что и смесь газов.

; ;

.

IV Часть. Первичная проверка понимания нового материала.

  • В чем суть уравнения состояния идеального газа?
  • Как записывают уравнение состояния для одного моля идеального газа?
  • В каком виде записывают уравнение состояния для произвольной массы идеального газа?
  • Какое значение для физики имеет уравнение Менделеева — Клапейрона?

V Часть. Обобщение новых знаний и умений с ранее полученными и сформированными

Задание №1

  1. Используя таблицу Менделеева, определить молярную массу воды.
  2. Определить молярную массу серной кислоты.
  3. Вычислите абсолютную температуру, если температура по школе Цельсия равна 30оС.

Задание №2

Решите задачи:

  1. В баллоне емкостью 40*10-3 м3 находится углекислый газ, массой 1,98 кг. Баллон выдерживает давление не более 30*105 па. При какой температуре возникает опасность разрыва баллона?
  2. Найдите объем баллона для хранения 50 молей газа, если при максимальной температуре 300 К давление равно 5 *105 па.
  3. Газ занимает объем 2 м 3 при температуре 273 0С. Какова будет его температура при объеме 3 м 3 и прежнем давлении?

Задание №3

Определите недостающие параметры:

m ,кг

М, кг/моль

Р, Па

V, м3

Т, К

?

3,2 * 10-2

1,5 *106

0,83

300

2,4

4 *10-2

?

0,4

200

0,3

2,8 *10-2

8,3 *105

?

280

0,16

4 *10-3

6 *104

0,83

?

VI Часть. Подведение итогов занятия.

Выставление оценок и их комментарий.

Наши услуги



Мир учителя © 2014–. Политика конфиденциальности