link13536 link13537 link13538 link13539 link13540 link13541 link13542 link13543 link13544 link13545 link13546 link13547 link13548 link13549 link13550 link13551 link13552 link13553 link13554 link13555 link13556 link13557 link13558 link13559 link13560 link13561 link13562 link13563 link13564 link13565 link13566 link13567 link13568 link13569 link13570 link13571 link13572 link13573 link13574 link13575 link13576 link13577 link13578 link13579 link13580 link13581 link13582 link13583 link13584 link13585 link13586 link13587 link13588 link13589 link13590 link13591 link13592 link13593 link13594 link13595 link13596 link13597 link13598 link13599 link13600 link13601 link13602 link13603 link13604 link13605 link13606 link13607 link13608 link13609 link13610 link13611 link13612 link13613 link13614 link13615 link13616 link13617 link13618 link13619 link13620 link13621 link13622 link13623 link13624 link13625 link13626 link13627 link13628 link13629 link13630 link13631 link13632 link13633 link13634 link13635 link13636 link13637 link13638 link13639 link13640 link13641 link13642 link13643 link13644 link13645 link13646 link13647 link13648 link13649 link13650 link13651 link13652 link13653 link13654 link13655 link13656 link13657 link13658 link13659 link13660 link13661 link13662 link13663 link13664 link13665 link13666 link13667 link13668 link13669 link13670 link13671 link13672 link13673 link13674 link13675 link13676 link13677 link13678 link13679
Кривоносенко Геннадий Владимирович
Должность:преподаватель общепрофессиональных дисциплин
Группа:Посетители
Страна:Россия
Регион:Воронежская область г. Семилуки
ЛАБОРАТОРНОЕ ЗАНЯТИЕ №14 ИССЛЕДОВАНИЕ ПОЛУПРОВОДНИКОВОГО ДИОДА

ЛабораторнОЕ ЗАНЯТИЕ №14

ИССЛЕДОВАНИЕ ПОЛУПРОВОДНИКОВОГО ДИОДА

Цель занятия: ознакомление с основными свойствами выпрямительных диодов и стабилитронов по вольтамперным характеристикам (ВАХ).

Перечень приборов.

1. Лабораторный стенд.

  1. Блок №1.
  2. Соединительные провода.

Рекомендуемая литература. 1) курс лекций; 2) (1) стр. 457-489; 3) стр. 21- 43.

Контрольные вопросы.

1. В чем заключается основное свойство выпрямительного диода?

2. По каким параметрам выбираются диоды в схемах?

3. Объясните выпрямляющее действие диода.

4. Приведите основные параметры выпрямительного диода.
5. Как влияет температура на диод?

Краткие теоретические сведения.

ЭЛЕКТРОПРОВОДНОСТЬПОЛУПРОВОДНИКОВ

Полупроводниками называются материалы, занимающие промежуточное положение между проводниками и диэлектриками. Особенностью металлических проводников является наличие сво­бодных электронов, являющихся носителями электрических заря­дов. В диэлектриках свободных электронов нет и поэтому они не проводят тока.

В отличие от проводников полупроводники имеют не только электронную, но и «дырочную» проводимости, которые в сильной степени зависят от температуры, освещенности, сжатия, электри­ческого поля и других факторов.



Химическую связь двух соседних атомов с образованием на
однрй орбите общей пары электронов (рис.1,а) называют ковалентной или парноэлектронной и условно изображают двумя линиями, соединяющими электроны ,(рис.1,6). Например, гер­маний принадлежит к элементам четвертой группы периодической системы элементов Д. И. Менделеева и имеет на высшей орбите четыре валентных электрона. Каждый атом в кристалле германия образует ковалентные связи с четырьмя соседними атомами (рис.1,в). При отсутствии примесей и температуре, близкой к абсо­лютному нулю, все валентные электроны атомов в кристалле гер­мания взаимно связаны и свободных электронов нет, так что герма­ний не обладает проводимостью. При повышении температуры или при облучении увеличивается энергия электронов, что приводит к частичному нарушению ковалентных связей и появлению сво­бодных электронов. Уже при комнатной температуре под действи­ем внешнего электрического поля свободные электроны переме­щаются и в кристалле возникает электрический ток. Электропровод­ность, обусловленная перемещением свободных электронов, называ­ется электронной проводимостью полупроводника или п-проводимостью. При появлении свободных электронов, в ковалентных связях образуется свободное не заполненное электроном (вакантное) место — «электронная дырка». Так как дыр­ка возникла в месте отрыва электрона от атома, то в области ее образования возника­ет избыточный положительный заряд. При наличии дырки какой-либо из электронов со­седних связей может занять место дырки и нормальная ковалентная связь в этом месте восстановится, но будет нарушена в том месте, откуда ушел электрон. Новую дырку может занять еще какой-нибудь электрон и т. д. Схема образования и заполнения дырки условно показана на рис.2. В уста­новленной наклонно подставке имеется че­тыре отверстия (дырки), в которых расположено четыре шара (электрона). Если шар / сместится вправо, то он освободит отверстие (дырку) иупадет с подставки, а в от­верстие, которое занимал этот шар, переместится шар 2. Свободное отверстие (дырку) шара 2 займет шар 3, а отверстие последнего — шар 4.

Перемещение дырок подобно перемещению положительных зарядов и называется дырочной электропроводностью. Под действием внешнего электрического поля дырки перемещаются в направлении сил поля, т. е. противоположно перемещению элек­тронов. Проводимость, возникающая в результате перемещения дырок, называется дырочной проводимостью, или р-проводимостью.

Таким образом, при электронной проводимости один свободный электрон проходит весь путь в кристалле, а при дырочной прово­димости большое число электронов поочередно замещают друг друга в ковалентных связях и каждый из них проходит свой отрезок пути.

В кристалле чистого полупроводника при нарушении ковалент­ных связей возникает одинаковое число свободных электронов и дырок. Одновременно с этим происходит обратный процесс — рекомбинация, при которой свободные электроны заполняют дырки, образуя нормальные ковалентные связи. При определенной температуре число свободных электронов и дырок в единице объема
полупроводника в среднем. остается постоянным. При повышении
температуры число свободных электронов и дырок сильно возрастает и проводимость германия значительно увеличивается, т. е.
полупроводники имеют отрицательный температурный коэффициент сопротивления. Электропроводность полупроводника при отсут­ствии в нем примесей называется его собственной электропроводностью.


Свойства полупроводника в сильной степени изменяются при
наличии в нем ничтожного количества примесей. Вводя в, кристалл полупроводника атомы других элементов, можно получить в кри­сталле преобладание свободных электронов над дырками или, наоборот, преобладание дырок над свободными электронами. На­пример, при замещении в кристаллической решетке атома германия атомом пятивалентного вещества (мышьяка, сурьмы, фосфора) четыре электрона этого вещества образуют заполненные связи с соседними атомами германия, а пятый электрон окажется сво­бодным (рис3.,а), а поэтому такая примесь увеличивает элек­тронную проводимость (п-проводимость) и называется донорной. При замещении атома германия атомом трехвалентного вещества (индий, галлий, алюминий) его электроны вступают в ковалентную связь с тремя соседними атомами германия, а связи с четвертым атомом германия будут отсутствовать, так как у индия нет четвертого электрона (рис.3,6).


Восстановление всех ковалентных связей возможно, если недо­
стающий четвертый электрон будет получен от ближайшего атома германия. Но в этом случае на месте электрона, покинувшего атом германия, появится дырка, которая может быть заполнена электроном из соседнего атома германия. Последовательное за­полнение свободной связи эквивалентно движению дырок. Примеси с меньшим числом валентных электронов в атоме по сравнению с атомом данного полупроводника вызывают преобладание дыроч­ной проводимости и называются акцепторными.

Носители заряда, определяющие собой вид проводимости в примесном полупроводнике, называются основными (дырки в р-полупроводнике и электроны в п-полупроводнике), а носители заряда противоположного знака — неосновными.

ПОЛУПРОВОДНИКОВЫЕ ДИОДЫ

Полупроводниковый диод (вентиль) представляет собой кон­тактное соединение двух полупроводников, один из которых с электронной проводимостью (n-типа), а другой — с дырочной (р-типа, рис.4,а). В результате большой концентрации элект­ронов в полупроводнике п они будут диффундировать из первого полупроводника во второй. Аналогично будет происходить диф­фузия дырок из второго р-типа полупроводника в первый п-типа. В тонком пограничном слое полупроводника п-типа возникает положительный заряд, а в пограничном слое полупроводника р- типа — отрицательный заряд. Между этими слоями возникает раз­ность потенциалов (потенциальный барьер) и образуется электрическое поле напряженностью Еп , которая препятствует диффузии электронов и дырок из одного полупроводника в другой. Таким образом, на границе двух полупроводников возникает тонкий слой, обедненный носителями зарядов (электронов и дырок) и облада­ющий большим сопротивлением. Этот слой называется запирающим или р-п-переходом.


Вследствие теплового дви­
жения в элсктрическое по­ле р-п-перехода попадают не­основные носители зарядов (элек­троны из р-области и дырки из п-области). Движениенеоснов­ных носителей зарядов под действием сил поля р-п-перехода направлено встречно диф­фузионному току основных но­сителей и называется дрейфовым или тепловым током, зависящим в сильной степени от температуры. При отсутствии внешнего электрического поля дрейфовый ток уравновешивается диффузионным и суммарный ток через р-п-переход равен нулю.

Соединив положительный зажим источника питания с металли­ческим электродом полупроводника n-типа, а отрицательный за­жим — с электродом полупроводника р-типа, получим внешнее электрическое поле Ев направленное согласно с полем Еп р-п-перехода, усиливающее его (рис.4,6.). Такое поле еще больше будет препятствовать прохождению основных носителей зарядов через запирающий слой, и через диод пройдет малый обратный токIобр, обусловленный неосновными носителями заряда. Обратный ток диода в значительной мере зависит от температуры, увеличи­ваясь с ее повышением.


При изменении полярности источника питания (рис.4,в)
внешнее электрическое поле Евокажется направленным встреч­ному полю р-п-перехода Еп и под действием этого поля электроны и дырки начнут двигаться навстречу друг другу и число основных носителей заряда в переходном слое возрастет, уменьшая потен­циальный барьер и сопротивление переходного слоя. Таким обра­зом, в цепи устанавливается прямой ток Iпр который будет значи­тельным даже при относительно небольшом напряжении источника питания U.

На рис.5 показана вольт-амперная характеристика герма­ниевого диода и его условное обозначение. Для большей нагляд­ности прямая ветвь (правая часть графика) и обратная ветвь (левая часть графика) характеристики изображены в различных масштабах. Характеристика показывает, что при небольшом пря­мом напряжении Uпр= 1В на зажимах диода в его цепи проходит относительно большой ток, а при значительных обратных напря­жениях Uобрток Iобр ничтожно мал.



Таким образом, полупроводниковый диод обладает односторонней проводимостью, т. е. яв­
ляется электрическим венти­лем.

Промышленность произ­водит электрические венти­ли: германиевые, кремние­вые, селеновые и медно-закисные. Германиевые и крем­ниевые вентили изготовляют двух типов: точечные и плос­костные. У точечного герма­ниевого диода (рис.6, а) помещен кристалл герма­ния 5 с электронной прово­димостью, в который остри­ем входит контактный пру­жинящий вывод анода 3. Под контактным острием в результате специальной термической обработки создается область с дырочной проводимостью. В плоскостном германиевом диоде (рис.6 б) на пластину германия 5 с электронной проводимостью накладывается таблетка из индия, которая в процессе изготовления диода нагревается до 500°С и плавится так, что ее атомы диффун­дируют в германий, образуя область с дырочной проводимостью. На границе двух областей (с электронной и дырочной проводи­мостью) появляется запирающий р-п-переход. Как в точечном, так и в плоскостном диоде германий 5 припоем 4 укреплен на кристаллодержателе 6, к которому приварен вывод катода (нижний) 7. Вывод анода 3 также припоем 4 укрепляется в области с дырочной проводимостью и выводится наружу в верхней части диода. Метал­лический корпус 2 сварен с кристаллодержателем 6 и стеклянным изолятором /.

Кремниевые диоды отличаются от германиевых не только мате­риалом полупроводника, но и некоторыми преимуществами, а имен­но: более высокой предельной температурой, значительно меньшим обратным током, более высоким пробивным напряжением. Однако сопротивление кремниевого вентиля в прямом направлении значи­тельно больше, чем германиевого.

Селеновый вентиль состоит из алюминиевого диска, с одной стороны покрытого слоем кристаллического селена, обладающего дырочной проводимостью, который служит одним электродом. Другим электродом является нанесенный на селен слой сплава кадмия и олова, при диффузии из которого атомов кадмия в селен образуется слой, обладающий электронной проводимостью. Селено­вые вентили имеют значительно меньшие обратные напряжения (до 60В) и плотности тока (0,1—0,2 А/см2), чем германиевые и кремниевые, так что их габариты и масса значительно больше. Однако характеристики селеновых вентилей более стабильны, что позволяет соединять их последовательно и параллельно для увеличения обратных напряжений и прямыхтоков. Кроме того, селеновые вентили обладают свойством самовосстановления, ко­торое сводится к следующему: если через пробитую шайбу про­пустить большой ток, то селен нагревается и плавится, закрывая место пробоя и восстанавливая вентильное свойство диода.

Медно-закисный вентиль состоит из медного диска со слоем оксида меди (I), к которому прилегает для получения хорошего контакта свинцовый диск с латунным радиатором большого диа­метра. Слой оксида меди (I) образуется при термической обра­ботке меди в атмосфере кислорода. Наружный слой оксида ме­ди (I), полученный при избытке кислорода, обладает дырочной проводимостью, а слой оксида, полученного при недостатке кислорода, — электронной проводимостью. Между этими двумя слоями возникает р-п-переход.

Медно-закисные вентили имеют низкие обратные напряжения (10В) и плотности тока (0,1 А/см2) и в преобразовательных устрой­ствах не используются. Их применение ограничено измеритель­ными приборами, имеющими стабильную характеристику.

Проверка знаний.

1.Каковы свободные носители зарядов в кристаллах крем­ния с донорной и акцепторной примесями?

1.В обоих кристаллах кремния — электроны.

2. В кристаллах кремния с донорной примесью — дырки, с ак­цепторной — электроны.

3. В кристаллах кремния с донорной примесью — электроны; с акцепторной — дырки.


2.
Чем объясняется нелинейность вольт-амперной характеристики р-п-перехода (рис.7.)
1.
Дефектами кристалличес­кой структуры.

2 Вентильными свойствами.

3.Собственным сопротивле­нием полупроводника.

3. На диоде марки Д312 при изменении прямого напряже­ния от 0,2 до 0,4 В прямой ток увеличивается от 3 до 16 мА. Каково дифференциальное сопротивление этого диода?

1. 15,4 Ом. 2. 12,3 Ом. 3. 1,54 Ом.

4. Каково соотношение между прямым Rnpи обратным сопротивлением Rобр полупроводникового диода?

1. Rnp> Rобр.. 2. Rnp< Rобр.. 3. RnpRобр.. 4. Rnp<< Rобр

5. Каково основное достоинство точечного диода?

1.Малые размеры.

2.

Наши услуги



Мир учителя © 2014–. Политика конфиденциальности