Руководитель:
Брославская Г.М., кандидат педагогических наук,старший преподаватель кафедры математики и физики
Коммунального учреждения «Харьковская гуманитарно-педагогическая академия»
Детство — незабываемый, скоротечный, неповторимый и самый важный период человеческой жизни. Оно занимает десятую часть жизни человека, имеет большое значение для его развития. Именно в первые четыре годы жизни человека развиваются пятьдесят процентов способностей, необходимых для обучения, а еще тридцать — в возрасте четырех-восьми лет.
Цель нашей статьи — исследовать развитие математический знаний у ребенка от двух до семи лет в детском саду. Этот вопрос является очень важным для дальнейшего обучения выпускника детсада в школе, училище, колледже, заведении высшего образования и т.д. Математику надо знать достаточно хорошо, чтобы в будущем не делать ошибок, решая разнообразные задачи, особенно те, которые могут пригодиться в жизни.
Проблема современных детских садов заключается в том, что очень мало времени уделяется педагогическими работниками логико-математическому развитию дошкольников, в результате чего дети приходят в начальную школу не подготовленными к более глубокому изучению математики.
Исследованием проблемы формирования элементарных математических представлений у детей дошкольного возраста занимались Л. В. Артемова,, Н. И. Баглаева, Л. В. Белошистая, Н. М. Бибик, М. С. Вашуленко, М. К. Сай, О. К. Грибанова, Л. В. Ищенко, Н. С. Коваль, В. В. Колечко, Г. Л Корнеева, Л. П. Кочина, А. М. Леушина, П. Д. Мацько, Л. Г. Мацяк, В. Д. Игрушинская, М. А. Машовец, О. Н.Хорошковская, Л. С. Плетеницкая, И. А. Менчинская, Д. С. Метлина, Т. А. Мусейбова,. Т. В. Тарунтаева, В. П. Тименко, А. А. Столяр, Е. Н. Удальцова, Е. И. Щербакова и др.
Ученая Е. И. Щербакова в своих трудах отмечала: «К сожалению, в практике работы педагоги ограничиваются формированием у детей элементов математических знаний и некоторых математических действий, не уделяя должного внимания формированию логических структур мышления, связи математического развития с развитием познавательного интереса, познавательной активности дошкольника» [3, с. 56].
Период от двух до семи лет взят нами потому, что: ребенка (в большинстве) отдают в детский сад, когда ему два года; в дальнейшем он посещает детсад до шести-семи лет; именно в этом возрасте ребенок начинает исследовать, изучать все, что окружает, находится возле него, с чем он играет, соприкасается, видит и ощущает.
Важным для нашего подрастающего поколения есть формирование у него, начиная с дошкольного возраста, интереса к познанию, активности, любознательности, открытости к взаимодействию и общению с окружающим миром, инициативности, готовности эксперементировать, испытывать себя.
Ребенок живет, развивается, обучается, воспитывается под влиянием разных средств (окружающей его среды, природы, игры, предметов быта, народных традиций и обычаев, праздников, народно-декоративного искусства, художественной литературы, технических средств обучения, семьи). Например: художественная литература влияет на умственное развитие детей, развивает представление, память, мышление, побуждает к обобщению и выводам, сравнению, анализу и синтезу.
Наиболее влиятельным средством обучения и воспитания ребенка является окружающая среда — совокупность условий, которые окружают человека и взаимодействуют с ним как с организмом, личностью.
Ведущим видом деятельности способствующей познанию ребенком окружающей его среды принадлежит игре. Именно в игре малыш воспроизводит свои впечатления от полученной им новой информации, осмысливает, интериоризирует её. Игра в этом случае: средство получение нових знаний, уточнение и закрепление их; средство перехода от незнания (неточного знания) к полному знанию; является активной мыслительной деятельностью, а также деятельностью, которая отражает все, находящееся вокруг. Игра дошкольника должна быть более свободной от влияния взрослых и служить средством его самовыражения и развития.
Работа воспитателей (родителей) должна проводиться с детьми раннего и дошкольного возраста с целью обогащения их опыта разнообразными сенсорными впечатлениями, формирования в малышей умений ориентироваться в сенсорных эталонах (цвет, величина, форма), их видах, признаках, свойствах. Именно наличие в ребенка сенсорного опыта будет в будущем служить базой его интеллектуального развития, основой для формирования логико-математических представлений, развития конструктивных навыков, расширения представлений о свойствах и признаках предметов, с которыми дети соприкасаются непосредственно в разных видах своей деятельности.
Например, уже с трех лет надо приучать ребенка: рассматривать (исследовать) предмет со всех сторон, знакомиться с его свойствами (какого цвета, формы, величины; твердый, мягкий; холодный, теплый); различать направления «вверх», «вниз», «вперед», «назад»; замечать изменения в размещении предметов.
Чтобы добиться нужного результата в формировании математических знаний, ребенку необходимо создать развивающую предметную среду, которая даст ему возможность активно исследовать не только внешние свойства предметов, но и их внутреннее строение. Решая для себя новые задания (сравнение предметов за количественными признаками, абстрагирование количества от других признаков предметов, определение цвета, формы, величины) малыш постепенно учится обобщать предметы, классифицировать их [1].
Четырехлетний малыш, посещая детсад, обучается элементам математики, уже в состоянии различать предметы разных форм: круг, квадрат, прямоугольник, треугольник, овал, окружность, шар, кубик (хотя иногда еще путает овал и окружность, квадрат и прямоугольник). Он способен группировать предметы: за существенными различиями (круг — квадрат, шар — кубик); по двум заданным сенсорным признакам — величиной и формой (большой, маленький круги и квадраты). В этом возрасте ребенок при разговоре сознательно использует слова «такой» и «не такой», «подобные», «одинаковые», «разные» (по величине или форме), «большой», «маленький» (по размеру)
В системе образовательной работы математического содержания необходимо предусмотреть специальные занятия по математике, интегрированные, комплексные занятия. Например: «Отыщи фигуру», «Геометрическое домино», «Геометрическое лото», «Сложи целое», «Один — много», «У кого сколько?», «Найди такой же», «Большие и маленькие» и др.
Представим вашему вниманию разработку занятия «Сложи целое»
Цель занятия: определить умение моделировать целое из частей и элементов.
Материал: геометрические фигуры разрезанные на 4 части.
Инструкция к проведению:
Педагог предлагает ребенку определить, какая геометрическая фигура получится если ее сложить из предложенных частей (рис.1).
Рис. 1
Оценка результатов:
Высокий уровень ( 2б. ) — делает работу быстро, самостоятельно, без ошибок.
Средний уровень ( 1б.) — нуждается в небольшой помощи.
Низкий уровень ( 0б.) — задание сложное для ребенка.
Занятия в детском саду начинаются с элементов игры, сюрпризных моментов — неожиданного появления игрушек, вещей, прихода «гостей» и др. Это заинтересовывает и активизирует малышей. Однако, когда впервые выделяют какое-то свойство геометрической фигуры и надо сосредоточить на нем внимание детей, игровые моменты могут и отсутствовать.
Многие педагоги изучение математических свойств тел (фигур) проводят сравнивания предметы, им дается характеристика: с подобными, или противоположными свойствами (длинный — короткий, круглый — некруглый).
Обычно воспитатели предлагают для изучения предметы (тела), в которых определенные свойства ярко выражены и уже знакомы детям, без лишних деталей, отличаются не более чем 1–2 признаками.
Точности восприятия дошкольниками предмета, его формы и размера, способствуют движения (жесты рукой), обведение рукой модели геометрической фигуры (по контуру), а проведение рукой вдоль, скажем, шарфика, ленточки (при сравнении по длине) дает возможность ребенку установить соотношение предметов именно по этому признаку. Например, «воспитатель учит детей обследовать геометрическую фигуру и при этом объясняет: «Возьмите фигуру в левую руку — вот так, указательным пальцем правой руки обведите, покажите стороны квадрата (прямоугольника, треугольника), они одинаковы. У квадрата есть углы. Покажите углы»» [2].
Детей надо приучать последовательно выделять и сравнивать (на основании сопоставления или наложения) однородные свойства вещей. («Что это? Какого цвета? Какого размера?»).
Пятилетние малыши уже, кроме вышеизложенных знаний, владеют представлениями об элементарной математике: считают, вычисляют, измеряют, умеют ориентироваться в пространстве и времени, что сопровождает все перцептивные действия. Педагоги продолжают формировать у них: привычку пользоваться сенсорными эталонами, приобретёнными ранее математическими представлениями в разных видах деятельности; прививают детям интерес к занятиям математикой.
У дошкольников 6-7 лет уже сформировано представление о числе, они: умеют считать предметы в пределах десяти, знают общие свойства чисел натурального ряда (не только данное, а любое число можно получить прибавляя единицу к предыдущему; любое число больше, чем каждое с предыдущих, и меньше чем каждое из следующих), могут считать в прямом и обратном порядке. Используя сюжеты простейших сказок, разные жизненные ситуации, малыши в состоянии составить задачи и примеры на сложение и вычитание: задачи-драматизации, задачи-иллюстрации, за практическими действиями, за рисунками, на поиск суммы и остатка. Им уже известны знаки «+» (плюс), «-» (минус), «=» (равно), «≠» (не равно). Дети могут: сравнивать предметы по высоте, ширине, толщине, длине, общей величине; измерять объём жидких и сыпучих веществ з помощью использования эталонных и других способов измерения; узнают геометрические фигуры, называют их свойства и особенности и др.
Как пример предлагаем игру-занятие «Чудеса геометрических фигур»
Цель занятия: развивать представление; побудить детей отгадывать названия сказок при помощи геометрических фигур.
Ход игры
Какие сказки ассоциируются с фигурами? Придумайте свои варианты и «спрячьте» свою сказку в нужные фигуры (рис.2).
«Три поросенка»
«О трех медведях»
«Лисица и журавль»
«Ивасик-Телесик»
Рис. 2
На основании вышеизложенного, делаем вывод о том, что для успешного обучения дошкольников математики (элементов математики) надо:
Литература: